読書の秋

日常にひそむうつくしい数学
自然は数式で表現される?

11月になりすっかり涼しくなりました。この3連休は「昼は少し働き、夜は読書」です。 大変興味深かった本の1冊です。すべての科学の基本になっている「数学」、数千年の歴史の中で自然科学(自然の解明)や工学(人間のための役立つ技術)に応用されていることがわかる。 わかりやすい説明で50年ぶりに学生時代に戻り「我々を取り巻く不思議で面白い世界」を体験させていただきました

【参考】本書をきっかけに不思議な世界へ⇒ 以下(KEYWORD)をネットで検索すると、更に秋の夜長を楽しめそうです

1章 かたち
ハチの巣は、なぜ六角形なの?
( 六角形の価値)

巻貝のぐるぐるは、どうやってできるの?
(等角らせん)

シマウマは、どうしてしましまなの?
(反応拡散原理)

雪の結晶は、なぜいろいろな「かたち」をしているの?
(雪は天から送られた手紙である:中谷宇吉郎)

草や木の「かたち」に法則はあるの?
(フラクタル図形)

4次元の「かたち」はどんな感じ?
(帰納法)で4次元図形を観る

2章 かず
花びらの枚数には、神秘的な法則が隠されている?
(フィィボナッチ数)

「かず」は文明とともに進歩してきた?
(さまざまな数:自然数、0(ゼロ)、整数、実数、虚数、複素数)

「分数で表せない数」を見つけた人は、海で殺された?
(背理法)でピタゴラスの矛盾を暴く

古代ギリシャ人は日時計とラクダで地球の大きさをはかっていた?
(エラトステネス)

なぜぴったり13年、17年ごとにしか出てこないセミがいるの?
(素数ゼミ、周期ゼミ、素数)

3章 うごき

どうして飛んでいる鳥は、ぶつからないの?
(複雑系)

生き物のしくみをまねたゲームがあるって本当?
(ライフゲーム)

交通費の計算は何千年もかかる?
(組み合わせ数、遺伝的アルゴリズム)

北半球の台風の渦は本当に左巻きなの?
(コリオリの力)

ロケットは、なぜ空気がなくても飛べるの?
(運動量保存の法則) ⇒ ロケットはなぜ宇宙を飛べるのか
 (ベルヌイの定理)  ⇒ 飛行機の飛べる理由とロケットとは異なる

自動運転はなぜうまく走れるの?
(ベイズ推定)
AI
PDCAサイクルが活きる

4章 とてつもなく大きな数
単位のいろいろ
(指数表記)

将棋の試合展開は何通りあるの?
(チェス、将棋、囲碁)

Googleの語源になった巨大数って?
(Googol数)とドメイン名取得の入力ミス

同じ親から生まれたのに、なぜ顔や性格が違うの?
(遺伝子、二重らせん、ゲノム)

「無限」にも大小がある?
(可算無限と非可算無限)

大きな素数が暗号に使われているって、本当?
(RSA暗号、公開鍵方式)